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According to the dual-route model of emotion, impulsive (affective) aggression involves fast acting lim-
bic regions, whereas in instrumental (predatory) aggression the neural focus lies on top-down anterior
cortical areas. However, increasing neuroscientific evidence now points toward differential involvement
of the cerebellum in the aggression circuit. In particular, the medial cerebellum, the vermis, is suggested
to be part of the limbic circuit involved in fast, preattentive processing during imminent threat and prov-
ocation, mediating impulsive forms of aggression. By contrast, the lateral cerebellar hemispheres with
their connections to the motor and prefrontal cortex provide a substrate for the top-down regulatory con-
trol mechanisms that allow for premeditated and instrumental forms of aggression. This theoretical
account can be reconciled with the involvement of the cerebellum in homeostatic functions and predic-
tive coding. The available scientific evidence provides an empirical basis for the view that the cortico-
limbic dual-route model of aggression should be extended to include the cerebellum.
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Aggression can be characterized as behavior directed toward
harming or injuring another living being who is motivated to avoid
such treatment (Blair, 2016). The neural circuitry underlying
aggression consists of subcortical limbic and cerebral cortical
areas, where the subcortical regions are conserved across mamma-
lian species and subserve survival-related behaviors (LeDoux,
2012; Panksepp & Zellner, 2004; Siegel & Pott, 1988). The limbic
circuit makes up a complex network that connects sensory tha-
lamic nuclei to the amygdala, hypothalamus and periaqueductal
gray (PAG) and allows an organism to survive and thrive by fast
detection of and responding to environmental challenges and oppor-
tunities (LeDoux, 2012). In particular, the amygdala is involved in
automatic, preattentive threat detection (LeDoux, 2000). Follow-
ing threat detection, the dorsomedial hypothalamus and PAG
receive input from the amygdala and are involved in the initiation
of autonomic responses associated with fight–flight behavior
(Fontes et al., 2011; Mobbs et al., 2007; Todd & Machado, 2019).
Cortical association areas including the prefrontal cortex interact
with the limbic circuit by exerting a top-down modulatory influ-
ence over these structures (Fontes et al., 2011; Mobbs et al., 2007;
Todd & Machado, 2019). Specifically, the dorsolateral parts of the
prefrontal cortex are involved in appraisal and expression of

survival behaviors, whereas the ventromedial parts serve an inte-
grating and regulatory function on emotion (Alia-Klein et al.,
2020; Etkin et al., 2011; Ochsner et al., 2012).

Impulsive and Instrumental Aggression and Their
Neural Underpinnings

In humans and other mammals, roughly two forms of aggres-
sion can be distinguished: Impulsive (affective) and instrumental
(predatory) aggression. Impulsive aggression typically occurs in
response to an unescapable threat or provocation and is accompa-
nied by a strong sympathetic physiological response (Meloy,
1988; Siegel et al., 1997; Weinshenker & Siegel, 2002). In cats,
affective attack elicited by injecting a neurokinin 1 receptor ago-
nist in the medial hypothalamus is characterized by growling, hiss-
ing, agitation, pupillary dilatation and rearing (Bhatt et al., 2003).
By contrast, instrumental aggression often involves more premedi-
tated and goal-directed behavior in the absence of sympathetic
arousal (Blair, 2010; Meloy, 1988; Weinshenker & Siegel, 2002).
Although instrumental aggression in humans may initially be less
prey-centered as compared to predatory aggression in animals,
both forms of aggression nonetheless do share behavioral charac-
teristics (Siegel & Victoroff, 2009; Weinshenker & Siegel, 2002).
In support of this assumption, comparative research has provided
evidence for the idea that animals and humans share neural and
physiological characteristics that link predatory aggression in ani-
mals to instrumental aggression in humans (LeDoux, 2012; Pan-
ksepp, 2011; Panksepp & Zellner, 2004).

In both humans (Blair, 2016) and animals (Panksepp & Zellner,
2004), the limbic system, which includes the amygdala, medial
hypothalamus and PAG, mediates impulsive aggression. The acti-
vation of the medial hypothalamus and PAG, both involved in
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initiating autonomic responses, is suggested to be critical for the
sympathetic arousal observed during impulsive aggression (Pan-
ksepp & Zellner, 2004). The prefrontal cortex can exert a modula-
tory role over subcortical limbic regions underlying impulsive
aggression (Blair, 2016; Panksepp & Zellner, 2004; Potegal,
2012). Instrumental aggression is argued to be another form of
goal-directed behavior that is no different from any other motor
response and as such is mediated by the motor cortex and the cau-
date (Blair, 2010). Whereas impulsive aggression is mediated by
the medial hypothalamus, animal studies suggest that the lateral
hypothalamus is involved in instrumental aggression (Gregg &
Siegel, 2001; Siegel & Victoroff, 2009). Furthermore, prefrontal
regions and the brain’s reward circuit (e.g., ventral striatum) are
suggested to be part of the brain regions that are recruited during
instrumental aggression, both in human (Nelson & Trainor, 2007)
and nonhuman mammals (Panksepp & Zellner, 2004). As men-
tioned earlier, the prefrontal cortex is involved in impulsive
aggression as well. However, when threat is imminent and poten-
tially life threatening, the brain’s subcortical survival circuit will
overrule the cortical control processes to allow for fast defensive
responses (Mobbs et al., 2007). We suggest that the contribution
of the prefrontal cortex differs between impulsive and instrumental
aggression. For impulsive aggression, the role of prefrontal
regions is to inhibit ongoing aggressive behavior (Blair, 2016;
Potegal, 2012). This is relevant in the context of the violence inhi-
bition mechanism, where ceasing of aggression is the result of the
opponent’s submissive cues (Blair, 1995). In instrumental aggres-
sion the role of prefrontal cortical regions lies more in governing
cognitive control mechanisms that facilitate the premeditated and
goal-directed nature of this type of aggressive behavior. Addition-
ally, researchers suggest that reward can play a role in impulsive
aggression as well (Chester & DeWall, 2016), in particular frustra-
tive nonreward that activates the ventral striatum together with the
insula and frontal brain areas (Bertsch et al., 2020). Yet, activation
of reward-dedicated brain regions is generally more associated
with instrumental aggression, which corresponds to the anticipa-
tion and outcome of reward serving as the primary motivation
(Siegel & Victoroff, 2009). In contrast, the core motivation under-
lying impulsive aggression has more to do with getting rid of unes-
capable frustration or threat. Here, we aim to provide a theoretical
framework that is based on the evolutionary lineage of the mam-
malian species in which the primordial circuits dedicated to moti-
vation and emotion have been conserved in humans (Panksepp,
2011). The cerebral cortical system is proposed to be an expansion
of these more ancient subcortical (limbic) circuits which allows
for more complex forms of behavior (Giaccio, 2006). In this
review we argue that the cerebellum followed a similar evolution-
ary trajectory which together with its intrinsic connections to the
cortico-limbic regions should be considered in psychoneural theo-
ries of aggression.

The Cerebellum in Aggressive Behavior

The cerebellum is a brain structure located in the posterior fossa
of the skull beneath the tentorium and the occipital lobe of the cer-
ebral hemisphere (O’Hearn & Molliver, 2001). Although it repre-
sents 10% of total brain weight, it accounts for more than 50% of
total neurons present in the human brain (Cardinali, 2017). In
addition, the surface of the cerebellar cortex makes up 80% of the

total surface of the cerebral cortex (Sereno et al., 2020). During
the course of evolution, the cerebellum expanded in concert with
the cerebral cortex, particularly with prefrontal and association
areas (Balsters et al., 2010; Weaver, 2005). The cerebellum con-
sists of a three-layered cortex, deep cerebellar nuclei (DCN) and
white matter (O’Hearn & Molliver, 2001). From a phylogenetic
point of view, it can be divided into three parts: the archicerebel-
lum (flocculonodular lobe), paleocerebellum (anterior lobe and
vermis) and neocerebellum (posterolateral hemispheres; O’Hearn
& Molliver, 2001). The archicerebellum, the phylogenetically old-
est part of the cerebellum, is connected to the vestibular system
and reticular formation in the brainstem and is implicated in the
control of body posture and ocular movements (Cardinali, 2017;
Schutter, 2013). The paleocerebellum is connected with the spinal
cord and the brainstem as well as subcortical structures (Schutter,
2013). It controls proximal musculature, posture, muscle tone and
reflexes (O’Hearn & Molliver, 2001). Moreover, its connections
with subcortical structures underlie its role in motivation and emo-
tion (Schutter, 2013). The neocerebellum is the phylogenetically
youngest part of the cerebellum and is involved in motor planning
as well as higher-order affective and cognitive functions (Adamas-
zek et al., 2017; O’Hearn & Molliver, 2001). Alternatively, the
cerebellum can be divided into lobes and lobules. The anterior
lobe, which is mainly involved in sensorimotor function (Stoodley
& Schmahmann, 2009), consists of lobules I-V (O’Hearn & Mol-
liver, 2001), whereas the posterior lobe is mainly involved in cog-
nitive functions (Stoodley & Schmahmann, 2009) and consists of
lobules VI-IX (O’Hearn & Molliver, 2001). The flocculonodular
lobe is equivalent to lobule X (O’Hearn & Molliver, 2001). Figure 1
depicts the anatomy of the cerebellum.

While the cerebellum has received little attention in the neuro-
scientific study of emotion, the aim of this selective review is to
discuss the available empirical evidence in support of cerebellar
involvement in aggression. To address this assumption, lesion
studies, structural and functional neuroimaging work and brain
stimulation studies will be discussed. The evidence supports an
extension of the existing cortico-limbic dual-route model of moti-
vation and emotion to the cerebellum in the context of aggression.

Lesion Studies

Patients with congenital or acquired cerebellar abnormalities
provide an important line of empirical work that contributes to
insights on the role of the cerebellum in aggression. Acquired cer-
ebellar damage can cause behavioral impairments known as the
cerebellar cognitive affective syndrome or Schmahmann’s syn-
drome, which is characterized by disturbed executive functioning,
impaired spatial cognition, language deficits and emotion dysregu-
lation (Greve et al., 1999; Hoche et al., 2018; Schmahmann &
Sherman, 1998). Impairments in emotion regulation include
increases in impulsivity, irritability, anger and aggression (Greve
et al., 1999; Kronemer et al., 2021; Schmahmann et al., 2007).
Lesions of the vermis in particular are associated with emotional
problems and behavioral disturbances (Schmahmann & Sherman,
1998). Interestingly, most cerebellar patients displaying anger or
aggression show lesions that include the vermis (Schmahmann et
al., 2007). Although these findings are in contrast with observa-
tions in cats and monkeys, where a taming effect has been reported
after vermal lesions (Berman et al., 1974; Peters & Monjan,
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1971), the link between the vermis and aggression is nonetheless
notable.
Studies in pediatric populations further add to our understanding

of the involvement of the cerebellum in anger and aggression.
Neuropsychological evaluations in children with cerebellar lesions
and malformations indicate that the cerebellar cognitive affective
syndrome is evident in children as well (Levisohn et al., 2000;
Tavano et al., 2007). In several studies, vermal lesions were asso-
ciated with impaired regulation of affect and behavioral disturban-
ces (Levisohn et al., 2000; Richter et al., 2005; Riva & Giorgi,
2000; Steinlin et al., 2003; Tavano et al., 2007). Based on self-rat-
ings and parental ratings of changes in behavior and affect after
cerebellar tumor resection, Richter et al. (2005) reported increased
aggression in two out of nine children with lesions that included
the vermis. Notably, the lesion was confined exclusively to the
vermis in one of these patients. Conversely, another patient
showed reduced aggression, which is an interesting finding that
does not concur with the theory that the vermis is involved in
affect dysregulation. However, as this patient had an extensive
lesion from lobule III extending to lobule X, which was not limited
to the vermis, lesions in more lateral regions may account for the
observed reduction in aggression. A recent case study of a boy
who exhibited psychiatric symptoms including aggression as a
consequence of a congenital cerebellar lesion characterized by
agenesis of the vermis and fusion of cerebellar hemispheres sup-
ports the notion that vermal abnormalities can be accompanied by
aggression (Schutter et al., 2021).
In sum, lesion studies provide evidence for the role of the cere-

bellum in aggression. Lesions and malformations of the vermis
particularly are associated with emotional dysregulation and be-
havioral disturbances, including anger and aggression.

Structural MRI Studies

Structural brain alterations have been observed in psychopathic,
antisocial and violent individuals and can give insights in brain
regions that are involved in aggression. Whereas reductions in
gray matter volume are predominantly found in prefrontal, tempo-
ral and limbic regions (Aoki et al., 2014; Gregory et al., 2012;
Rogers & De Brito, 2016; Tiihonen et al., 2008; Yang et al., 2009;
Yang & Raine, 2009), findings for the cerebellum are less consist-
ent, as both reductions and increases in gray matter volume have
been reported in these individuals.

Lower gray matter volumes in the left cerebellum, specifically
lobules I–IV, V and VIIB, and in right lobule VIIB have been
observed in antisocial offenders compared to controls (Bertsch et
al., 2013). Additionally, Puri et al. (2008) reported total cerebellar
gray matter volume reductions in schizophrenic patients with a
history of violent offenses as compared to nonviolent patients with
schizophrenia. A study in healthy adolescents showed that higher
aggression scores were associated with lower gray matter volumes
of the left anterior lobe and lower gray matter volumes of right
posterior lobules VIIB and VIIIA (Wolfs et al., in press). In boys
with conduct disorder, smaller gray matter volumes have been
found in bilateral Crus I (Dalwani et al., 2011) and right lobule
VIIIB and X (Zhang et al., 2018). Furthermore, lower gray matter
volume and gray matter concentration of the vermis have been
demonstrated in this patient population (De Brito et al., 2009;
Huebner et al., 2008). In contrast, Huebner et al. (2008) reported
enhanced bilateral gray matter volume in lobule IX in boys with
conduct disorder. This finding is in line with results from Leutgeb
et al. (2015), who reported increased gray matter volumes in
lobule IX as well as in vermal lobule I–IV in male high-risk
offenders relative to controls. Additionally, increased gray matter

Figure 1
Basic Neuroanatomy of the Cerebellum

Note. Flatmap showing the lobular organization of the cerebellum (A) and main cerebellar
structures according to evolutionary developmental biology (B).
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volumes have been found in left Crus I in violent offenders (Leut-
geb et al., 2016). Another study in violent offenders with antisocial
personality disorders and substance dependence reported larger
white matter volumes in the left cerebellum and larger gray matter
volumes in the right cerebellum (Tiihonen et al., 2008). Gray mat-
ter volumes in both right and left vermal and lateral cerebellar
regions correlated positively with interpersonal and affective psy-
chopathic problems, risk of recidivism, temperament and anger in
violent offenders (Leutgeb et al., 2015). Similarly, impulsivity
was correlated positively with gray matter volumes of the posterior
vermis in healthy adolescents (Wolfs et al., in press).
Volumetric reductions are typically found in brain regions involved

in emotional processing, morality, decision-making, learning and be-
havioral control (Santana, 2016; Tiihonen et al., 2008; Yang & Raine,
2009) and provide insights into the functional neuroanatomic substrate
of antisocial and violent behaviors. The observation of a positive rela-
tionship between vermal gray matter volumes and impulsivity sup-
ports the idea that structural alterations reflect abnormalities in
behavioral control (Wolfs et al., in press), facilitating aggressive
behavior arguably as a result of diminished inhibitory cerebellar output
to the forebrain. In psychopaths, smaller posterior cerebellar volumes
were associated with worse recognition of emotional faces (Pera-Guar-
diola et al., 2016), suggesting that the relationship between the cerebel-
lum and aggression may involve abnormalities in emotion perception.
It should be noted that larger volumes do not necessarily imply better
functionality, as larger brain volumes could also be indicative of atypi-
cal neural development that promotes early-onset aggressive behavior
(Tiihonen et al., 2008).
In sum, both differences in gray matter volume observed in cere-

bellar regions of violent individuals and associations between cerebel-
lar volume differences and indices of aggression and impulsivity
support the idea of cerebellar involvement in aggression.

Functional MRI Studies

Because anger is an emotional state that drives aggression (Pan-
ksepp & Zellner, 2004), fMRI studies on the involvement of the
cerebellum in anger are relevant for understanding the relationship
between the cerebellum and aggression. During anger processing,
hemodynamic activity has been reported in left Crus I, left Crus II,
left lobule VIIB, right and vermal lobule V and vermal lobule VI
(Grosbras & Paus, 2006; Lin et al., 2016; Park et al., 2010; Spoont
et al., 2010). Cerebellar activity patterns associated with anger
processing have been confirmed in a recent meta-analysis in which
anger and threat processing were shown to evoke activity in bilat-
eral Crus I and Crus II, right lobule VI and left lobules VIIIA,
VIIIB and X (Klaus & Schutter, 2021). In a previous study that
investigated the functional cerebellar topography of primary emo-
tions, anger evoked activity in vermal, paravermal and right lobule
VI, vermal lobule IX and right Crus I (Baumann & Mattingley,
2012). However, activity in lobule VI and Crus I was not specific
for anger processing as the activity overlapped with cerebellar ac-
tivity during fear processing. Importantly, both anger and fear are
emotions that are elicited in response to threat (Blair, 2012;
LeDoux, 2000), suggesting that these emotions share a common
neural pathway that is involved in the processing of threat-related
stimuli and that mediates autonomic fight-flight responses (Bau-
mann & Mattingley, 2012). The subcortical circuit is likely to be
implicated in this shared neural network, given its involvement in

survival behaviors and association with affective attack (LeDoux,
2012; Panksepp & Zellner, 2004; Siegel & Pott, 1988).

Brain activity associated with aggression is typically investi-
gated in laboratory paradigms that evoke aggression through prov-
ocation and frustration. The studies that will be discussed here
focused on healthy volunteers. The Taylor Aggression Paradigm
(TAP; Taylor, 1967) is among the most frequently used laboratory
aggression tasks and starts with a decision phase, during which the
severity of the prospective punishment (i.e., a noise blast) of the
opponent is set by the participant. This phase is then followed by a
competitive reaction time (RT) task and an outcome phase, during
which the actual punishment is administered to the player who lost
the game. Buades-Rotger et al. (2017) reported activation in right
lobule VI when participants decided to face the opponent, imply-
ing that they would compete in another RT trial of the TAP. Neu-
ral activity specific to retaliation (i.e., selecting a high punishment
under provocation) has been found in right lobules I-IV, V and VI
(Chester & DeWall, 2016; Dambacher, Sack, et al., 2015; Krämer
et al., 2007). Krämer et al. (2007) reported activity in right Crus I
when participants won the RT task, as well as activity in left Crus
I when participants won after high provocation compared to low
provocation. Confrontation with high compared to low provoca-
tion in the feedback phase was associated with activity in left Crus
I and left lobule VI (Wagels et al., 2019).

Violent video games, social exchange paradigms and the Point
Subtraction Aggression Paradigm (PSAP; Cherek et al., 1997) are
other tasks used to elicit aggression through provocation. Activity
in right Crus I has been observed when participants engaged in a
violent video game and was postulated to reflect higher sensorimo-
tor integration needed to control the violent video game with the
right hand (Mathiak & Weber, 2006). In a social fairness game,
participants could accept a fair or unfair monetary offer of a part-
ner in exchange for $3 or they could spend some of their $3 to
punish the partner for his or her offer (White et al., 2014).
Increased right-sided activity in lobules V, VI and Crus II accom-
panied by decreased activity in left lobule V was observed as par-
ticipants’ punishment of the partner increased. According to the
authors, cerebellar activity is consistent with an affective aggres-
sive response to provocation, instead of a reward-related response
to being treated unfairly. Based on increased activity in both im-
pulsive aggressive individuals and controls, left lobule VI has
been identified as a region specifically implicated in choosing
retaliation over monetary reward on the PSAP (Gan et al., 2016).

A region consistently linked to aggression in fMRI studies is
the cerebellar anterior lobe. A meta-analysis on the functional to-
pography of the cerebellum demonstrated that lobule V and adja-
cent lobule VI are activated across sensorimotor tasks (Stoodley &
Schmahmann, 2009), suggesting that activity in these areas
observed during aggressive behavior reflects a motor component
of the aggressive response. Activity related to motor functioning
would be plausible, given the motor response that usually has to
be executed in laboratory aggression paradigms. A meta-analysis
on the functional topography of aggression in the cerebellum
showed that aggression evoked activity in lobules V and VI, thus
overlapping with the regions involved in sensorimotor functioning
(Klaus & Schutter, 2021). Clusters of activity in the anterior lobe
displayed connectivity with the somatomotor and default mode
network, providing additional support for the notion that activity
in the anterior lobe is associated with motor execution during
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aggression. Another meta-analysis on neural networks of aggres-
sion showed that the right cerebellum, the peak of the cluster being
located in lobule V, is connected with cerebral somatosensory
regions during elicited aggression (Wong et al., 2019). This net-
work was found to be involved in the execution, preparation and
mental imagery of actions.
Whereas the anterior lobe of the cerebellum is specialized in senso-

rimotor functioning, the posterior lobe is known to be involved in
cognitive and emotional functioning (Stoodley & Schmahmann,
2009). As such, activity observed in the posterior lobe of the cerebel-
lum during aggression, which is located particularly in Crus I and
Crus II, is likely to reflect the recruitment of those functions. Crus I
and Crus II are involved in a variety of cognitive functions that could
underlie anger experience and expression of aggressive behavior
(E et al., 2014; Stoodley & Schmahmann, 2009). Arguably, activity
in these regions could reflect efforts to maintain self-regulation when
being provoked, as well as improvements in focus and self-monitor-
ing abilities that enable optimal performance in a competitive provo-
cation task. Furthermore, the role of these regions in social cognition
indicates that activity could reflect social–cognitive processes during
aggression (Van Overwalle et al., 2014, 2020). This is supported by
overlap in posterior lobe activity between retaliation and cognitive
processes, particularly hostile attribution bias and negative emotional
response (Coccaro et al., 2021), which are associated with aggression
(Coccaro et al., 2017; Tuente et al., 2019). Because anger facilitates
aggression, the roles of Crus I in anger processing (Baumann & Mat-
tingley, 2012) and Crus II in emotional self-experiences (Van Over-
walle et al., 2020) suggest that these emotional functions may
underlie activity related to aggression as well. The preference for
processing negative emotional stimuli that is observed in several cere-
bellar regions, including Crus I and Crus II, implies that the cerebel-
lum is involved particularly in goal-directed behavior in reaction to
negative emotional stimuli (Schraa-Tam et al., 2012). It is therefore
conceivable that activity in Crus I and Crus II reflects emotional proc-
esses that guide goal-directed behavior during aggression.
Finally, it should be noted that thus far, only a limited number

of fMRI studies investigating neural correlates of anger and
aggression reported cerebellar activation. This underrepresentation
may partly be explained by a selective preference for frontal brain
regions in scanning parameters and analysis pipelines (Schlerf et
al., 2014), making it difficult to actually detect responses in the
cerebellum. Consequently, future studies are strongly encouraged
to include the cerebellum in scanning protocols, which would
allow for a more accurate picture on neural regions involved in an-
ger and aggression.
In sum, activity that is observed in the anterior lobe, specifically

lobule V and adjacent lobule VI, during aggression likely repre-
sents motor execution. By contrast, activity in the posterior lobe
associated with aggression may reflect the recruitment of proc-
esses related to emotion and cognition.

Brain Stimulation Studies

Direct evidence for the involvement of the cerebellum in
aggression stems from early intracranial brain stimulation studies
in animals and humans. In animals, electrical stimulation of the
DCN (i.e., fastigial nucleus) in cats elicited sham rage (Zanchetti
& Zoccolini, 1954) and affective attack (Reis et al., 1973).
Recently, increasing Purkinje cell activity in the cerebellar cortex

of the vermis via optogenetic stimulation in mice was shown to
significantly reduce the frequency of attacks toward an intruder
(Jackman et al., 2020). Conversely, inhibiting Purkinje cell activ-
ity in the vermis had the opposite effect. This finding concurs with
the inhibitory projections of the Purkinje cells to the DCN (Telg-
kamp & Raman, 2002) which, in turn, reduce the DCN excitatory
drive to extracerebellar regions including the hypothalamus. In
psychiatric patients, electrical stimulation of electrodes implanted
in the vermis led to substantial improvements of aggressive behav-
ior (Heath, 1977; Heath et al., 1980).

In line with electrical stimulation studies in animals (Reis et al.,
1973; Zanchetti & Zoccolini, 1954), results from a noninvasive
transcranial magnetic stimulation (TMS) study in humans support
the hypothesis that the cerebellum is involved in autonomic activ-
ity underlying aggression. Increasing excitability of the vermis
using intermittent theta burst stimulation caused a significant
decrease in heart rate (Demirtas-Tatlidede et al., 2011). Reciprocal
projections from the cerebellum to the hypothalamus, a critical
region involved in regulating autonomic responses (Fontes et al.,
2011; Todd & Machado, 2019), are proposed to underlie this mod-
ulatory effect of the cerebellum on autonomic functions (Wen et
al., 2004; Zhu et al., 2006). Furthermore, inhibitory low-frequency
TMS over vermis was shown to impair emotion regulation (Schut-
ter & Van Honk, 2009). The link between lower emotion regula-
tion and increased anger after provocation (Mauss et al., 2006)
and aggression (Holley et al., 2017) suggests that cerebellar-
related impairments in emotion regulation may underlie aggres-
sion. In another study, the administration of transcranial direct cur-
rent stimulation (tDCS) to the medial cerebellum provided
evidence for cerebellar involvement in response inhibition (Wynn
et al., 2019), adding further support to the proposed links between
the cerebellum, behavioral control and aggression (Denny &
Siemer, 2012; Madole et al., 2020; Pawliczek et al., 2013). More-
over, noninvasive brain stimulation studies have demonstrated that
the cerebellum is implicated in anger processing. Anodal and cath-
odal cerebellar tDCS enhanced the recognition of facial anger
(Ferrucci et al., 2012). TMS over the left posterior medial cerebel-
lum interfered with participants’ ability to discriminate between an
angry and either another negative or positive body posture, but not
with the ability to discriminate between body postures displaying
positive emotions (Ferrari et al., 2019).

In sum, electrical and optogenetic stimulation in animals as well
as intracranial brain stimulation in humans provides direct evi-
dence for the role of the cerebellum in aggression. Noninvasive
brain stimulation studies have provided additional support for cer-
ebellar contributions to physiologic, cognitive and emotional proc-
esses of aggression.

Discussion

In the previous sections, evidence from lesion, structural and
functional neuroimaging and brain stimulation studies was pre-
sented in support of the involvement of the cerebellum in aggres-
sion. It seems reasonable to assume that different regions of the
cerebellum will be involved in implementing goal-directed behav-
ior versus the more automatic responses associated with impulsive
aggression. In support, the vermis with its connections to the PAG
and limbic system has been linked to physiological arousal and
impulse regulation. The posterolateral cerebellum as part of the
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cerebello-cortical system is proposed to play a more pronounced
role in the cognitive control mechanisms associated with the regu-
lation of premeditated and goal-directed forms of aggression. As
such, the findings warrant an extension of the cortico-limbic dual-
route model of motivation and emotion to the cerebellum in the
context of aggression. In this extended model, the fast route
involves the vermis and the slow route involves the lateral cerebel-
lar hemispheres, which are particularly relevant for impulsive
(affective) and instrumental (predatory) aggression, respectively.
It should be noted that impulsive aggression seems to be an overly

broad concept that covers at least offensive and defensive aggression,
which are considered to be quite distinct forms of behavior by many
researchers who study aggression in animals. Offensive aggression is
likely anger-related and often occurs in response to loss of resources,
whereas defensive aggression is likely fear-related and often occurs
in response to threats when the animal cannot escape (Blanchard &
Blanchard, 2003). As noted earlier, impulsive aggression is mediated
by the amygdala, medial hypothalamus and PAG (Panksepp & Zell-
ner, 2004). These regions are important in the detection of and
response to threat (Blair, 2016; Méndez-Bértolo et al., 2016). Animal
research shows that the vermis has connections to the limbic system
including the hypothalamus (Schmahmann, 2000; Wen et al., 2004;
Zhang et al., 2016). Based on these connections, the vermis has been
coined the “limbic cerebellum” (Schmahmann et al., 2007) and argu-
ably participates in impulsive forms of aggression. This assumption
is supported by several lines of evidence reviewed above that show
specific involvement of the vermis in functions particularly important
in impulsive aggression. First, insights on the role of the vermis in
the regulation of cardiovascular responses during aggression, as dem-
onstrated in animal (Reis et al., 1973; Zanchetti & Zoccolini, 1954)
and human (Demirtas-Tatlidede et al., 2011) brain stimulation stud-
ies, add to the idea that the vermis is involved in impulsive aggres-
sion. Contrary to instrumental aggression, which is characterized by
low autonomic arousal, impulsive aggression is marked by height-
ened autonomic arousal (Conner et al., 2009; Vitiello & Stoff, 1997;
Weinshenker & Siegel, 2002). Connections of the vermis with the
hypothalamus provide a neuroanatomical pathway for autonomic
arousal associated with impulsive aggression (Wen et al., 2004; Zhu
et al., 2006). Additionally, anger, one of the main emotions driving
impulsive aggression (Panksepp & Zellner, 2004), evokes activity in
the vermis (Baumann & Mattingley, 2012; Ferrari et al., 2019;
Spoont et al., 2010). It should furthermore be noted that other emo-
tions that signal threat, for example fear and disgust, evoke activity in
the vermis as well (Baumann & Mattingley, 2012). These findings
indicate that the vermis is part of the subcortical survival circuit
involved in fast threat detection and the automatic initiation of fight-
flight behaviors. Indeed, the rapid detection of and response to salient
information is subserved by the subcortical thalamo-amygdala circuit
(LeDoux, 1995, 1996, 2012). Furthermore, the involvement of the
medial cerebellum in emotion regulation (Schutter & Van Honk,
2009) and response inhibition (Wynn et al., 2019), as indicated by
noninvasive brain stimulation studies in humans, demonstrates that
the vermis is an integral part of the brain’s subcortical survival circuit.
Finally, the role of the vermis in impulsive aggression is supported
by human lesion studies, showing that lesions or malformations of
the vermis are consistently associated with emotion dysregulation, an-
ger and aggressive behavior (Levisohn et al., 2000; Richter et al.,
2005; Riva & Giorgi, 2000; Schmahmann et al., 2007; Schmahmann

& Sherman, 1998; Schutter et al., 2021; Steinlin et al., 2003; Tavano
et al., 2007).

Based on this evidence, a circuit comprising the vermis, thala-
mus, amygdala, hypothalamus and PAG is suggested to provide a
fast route in the context of aggression that is particularly relevant
for impulsive aggression. This pathway extends the fast route pro-
posed by LeDoux (1995, 1996), which runs from the thalamus to
the amygdala and enables rapid processing of salient stimuli. The
fast subcortical route applies to impulsive aggression, as this form
of aggression is driven by anger, is characterized by autonomic
arousal and requires fast responding to imminent threat and
provocation.

Instrumental aggression is suggested to be mediated by the lat-
eral hypothalamus, motor and reward regions and higher cortical
systems (Blair, 2010; Gregg & Siegel, 2001; Nelson & Trainor,
2007; Panksepp & Zellner, 2004; Siegel & Victoroff, 2009). The
evolution of cerebellar lateral lobules mirrored the development of
neocortical areas to which they are connected (Balsters et al.,
2010). This simultaneous development indicates that these regions
are functionally coupled and subserve higher cognitive functions
in humans (Balsters et al., 2010). Posterior lateral regions, specifi-
cally Crus I and Crus II, are selectively connected to prefrontal
cortices (Buckner et al., 2011; Sang et al., 2012) and thus offer a
neural gateway for top-down modulation of the experience and
expression of anger and aggression that is more cognitively ori-
ented (Ochsner & Gross, 2005). Given the coevolution of and con-
nections between these regions, the recruitment of posterolateral
cerebellar regions during aggression is suggested to reflect cogni-
tive control mechanisms that are particularly relevant for instru-
mental aggression, as these mechanisms enable deliberate and
goal-directed behavior.

Lobules IV and V in the anterior lobe and lobule VI in the pos-
terior lobe are connected to cerebral somatomotor cortices (Buck-
ner et al., 2011; Sang et al., 2012). As such, these regions are
suggested to be involved in motor functioning during aggression.
Motor regions that are recruited during aggression might also
reflect approach-related motivational tendencies that guide the
transition from motivation to action. Indeed, the previously dis-
cussed meta-analysis on cerebellar functional activity patterns
associated with aggression suggests that the right-sided activity
observed in lobules V and VI during aggression reflects sensori-
motor processes related to approach motivation caused by frustra-
tion and/or provocation (Klaus & Schutter, 2021). The crossed
cerebello-thalamo-cortical and cortico-pontine-cerebellar loops
(Kelly & Strick, 2003; Palesi et al., 2015) provide a neuroanatomi-
cal basis for approach- and avoidance-related aggressive behav-
iors. Functional asymmetries underlying nonmotor functions in the
cerebral cortex show parallel but reversed asymmetries in the cere-
bellum (Wang et al., 2013). Accordingly, the lateralization of
approach-avoidance motivations in the frontal cortex, where
approach motivation is relatively left-lateralized and avoidance
motivation is relatively right-lateralized (Kelley et al., 2017;
Schutter & Harmon-Jones, 2013), would hypothetically be mir-
rored in the cerebellar hemispheres (Schutter, 2020). Instrumental
aggression is driven by a strong reward-related motivation to
achieve a certain state of affairs (Panksepp & Zellner, 2004), sug-
gesting that the motivation to approach is central for this form of
aggression. This is supported by human studies that demonstrate a
link between instrumental forms of aggression and reduced
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avoidance tendencies (Dambacher, Schuhmann, et al., 2015; Von
Borries et al., 2012). Based on this evidence, an overlap between
cerebellar regions implicated in instrumental aggression and
approach motivation is anticipated.
Taken together, the lateral cerebellar hemispheres are proposed

to be part of a slow control route in the context of aggression that
is particularly relevant for instrumental aggression. This route is
an extension of the slow route proposed by LeDoux (1995, 1996),
which runs from the thalamus to the amygdala via the frontal cor-
tex and provides slower, but more complex and precise processing
of salient stimuli. Specifically, the circuit that connects the anterior
cerebellar lobe with the motor cortices subserves the action com-
ponent of aggression. The circuit comprising the cerebellar poste-
rior lobe and prefrontal regions subserves cognitive control
functions in the context of aggression. Cognitive control is
required specifically for instrumental aggression, because it ena-
bles deliberate, premeditated and goal-directed behavior.

Summary and Conclusion

Several independent lines of evidence support the involvement
of the cerebellum in aggression. According to the dual-route
model of motivation and emotion, impulsive (affective) aggression
involves fast acting limbic regions, whereas in instrumental (pred-
atory) aggression the neural focus lies on top-down anterior corti-
cal areas. As illustrated in Figure 2, we propose an extension of
this cortico-limbic dual-route model that also incorporates the cer-
ebellum in the context of aggression. A circuit comprising the ver-
mis, PAG, thalamus, amygdala, hypothalamus and prefrontal
cortex is suggested to provide a fast route, which is particularly
relevant for impulsive aggression because it enables emotion-
driven, rapid responses to threatening or provocative situations.
Additionally, a circuit comprising lateral cerebellar, motor and
prefrontal cortices provides a slow control route of aggression that
is involved predominantly during instrumental aggression, as these

regions subserve functions that enable deliberate, premeditated,
and goal-directed behavior.
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